Causal strength induction from time series data.
نویسندگان
چکیده
منابع مشابه
CAUSAL DISCOVERY FROM SUBSAMPLED TIME SERIES DATA BY CONSTRAINT OPTIMIZATION Causal Discovery from Subsampled Time Series Data by Constraint Optimization
This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system’s causal structure if not properly taken into account. In this paper, we first consider the search for the system timesca...
متن کاملCausal Discovery from Subsampled Time Series Data by Constraint Optimization
This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system's causal structure if not properly taken into account. In this paper, we first consider the search for the system timesca...
متن کاملFast and Accurate Causal Inference from Time Series Data
Causal inference from time series data is a key problem in many fields, and new massive datasets have made it more critical than ever. Accuracy and speed are primary factors in choosing a causal inference method, as they determine which hypotheses can be tested, how much of the search space can be explored, and what decisions can be made based on the results. In this work we present a new causa...
متن کاملOn Causal Discovery from Time Series Data using FCI
We adapt the Fast Causal Inference (FCI) algorithm of Spirtes et al. (2000) to the problem of inferring causal relationships from time series data and evaluate our adaptation and the original FCI algorithm, comparing them to other methods including Granger causality. One advantage of FCI based approaches is the possibility of taking latent confounding variables into account, as opposed to metho...
متن کاملRobust Induction of Process Models from Time-Series Data
In this paper, we revisit the problem of inducing a process model from time-series data. We illustrate this task with a realistic ecosystem model, review an initial method for its induction, then identify three challenges that require extension of this method. These include dealing with unobservable variables, finding numeric conditions on processes, and preventing the creation of models that o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Psychology: General
سال: 2018
ISSN: 1939-2222,0096-3445
DOI: 10.1037/xge0000423